If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+10y-9.9379=0
a = 1; b = 10; c = -9.9379;
Δ = b2-4ac
Δ = 102-4·1·(-9.9379)
Δ = 139.7516
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-\sqrt{139.7516}}{2*1}=\frac{-10-\sqrt{139.7516}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+\sqrt{139.7516}}{2*1}=\frac{-10+\sqrt{139.7516}}{2} $
| 6x÷2=180 | | 3x+6=-9x-12 | | 10+7p=2p+55 | | x^2-x+1.92=0 | | 18/40=90/x | | 15/17=x/51 | | x/12=119/204 | | 10/x=25/50 | | 70=7-9x | | 3.6=9(y+0.1)y= | | 3/y+6(4)=6 | | 1/2x+1/2x=x+@ | | 10c=9c+9 | | 14x°+22x°=180° | | (d+4)(d-2)=55 | | 42x°+22x°=180° | | 3(×-5)=2(3x+21) | | 8p-p=35 | | +42°+22x°=180° | | X+42°+22x°=180° | | 0.5(x-18)=4+7x | | 71=29^x | | 7n+8=-8n+8-3n | | 6+(y+7)=9 | | 1/2(×-18)=4+7x | | 6-(y+7)=9 | | 49=1-4(y-10) | | 3(y+4)-9(y-8)=114 | | x+(x-4)+(3x-9)=90 | | 4+9(p-10)=-84-(2-2p) | | 3(x+1)=8+x | | 18.00+1.50h=13.00+2.75h |